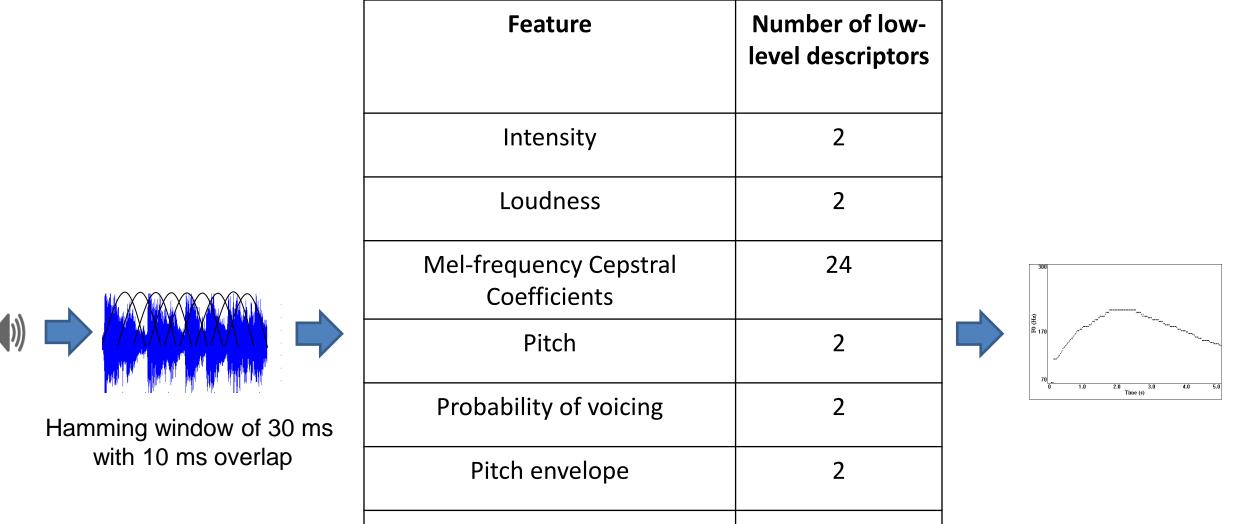


DETECTION OF LAUGHTER IN CHILDREN'S SPEECH USING SPECTRAL AND PROSODIC ACOUSTIC FEATURES

Hrishikesh Rao¹, Jonathan C. Kim¹, Agata Rozga², and Mark A. Clements¹

¹ School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA ² School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA



Expeditions in Computing

Motivation

- Laughter is an important paralinguisitc cue that can be useful in gauging the affective state of the speaker.
- Detection of laughter in children's speech is less explored and has important applications in clinical psychology.
- Laughter, along with other

Methodology and Results

Multi-Modal Analysis Ideas

Laughter and Smile Detector

vocalizations, is an important marker for very early detection of autism spectrum disorder (ASD) [1]. Diarization of para-lingusitic events would benefit psychologists who are interested in studying children's affective communication.

Datasets

FAU-Aibo Emotion Corpus [2], [3]

- Interaction between adolescent and Sony's Aibo robot
- Data collected from 51 children (aged 10-13 years, 21 male, 30
- female)
- Laughter annotated along with speech.

Line spectral frequencies	16
Zero-crossing rate	2
Formant frequency and bandwidth	6
Ratio of formant frequencies	3
Ratio of bandwidths of formants	3
Euclidean distance between formant frequencies	3
Euclidean distance between formant bandwidths	3
Euclidean distance between ratio of formant frequencies	3

Feature

Classification

i=1 i=1

Five subsets of data consisting of randomly selected 250 speech samples

Statistical Measure

Max./Min. value and respective

range, arithmetic mean, 2 linear

regression coefficients and linear

relative position within input,

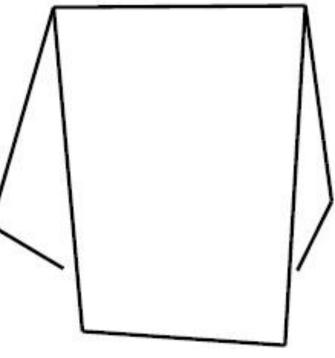
and quadratic error, standard

deviation, skewness, kurtosis,

ranges

quartile 1-3, and 3 inter-quartile

- Frame-level acoustic features extracted and statistical measures evaluated at the phrase level
- Features are ranked as per the information gain criterion
- $IG(w_i, Xj) = -\sum_{i=1}^{M} \Pr(w_i) \log_2 \Pr(wi) + \frac{1}{2} \log_2 \Pr(wi)$
 - $Pr(X_i) Pr(w_i|X_i) log_2 Pr(wi|X_i)$

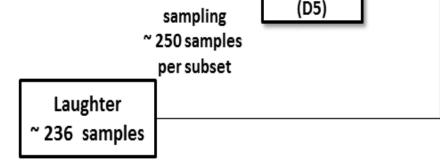

Intersection of top 100 features for

each subset results in final feature set

- Laughter correlated with smiling.
- FaceTracker used for extracting visual features.
- Late fusion of scores from visual and audio classifier could be used for predicting emotion viz. joy.

Posture and Para-Lingusitic Event Detector

 Tickling involves movement of upper body and laughter. • Use of upper body predicates along with laughter detection results.


- Different types of laughter annotated (voiced, unvoiced, voiced-unvoiced, and speech modulated with laughter)
- Number of sample points 13478 for speech and 236 for laughter.

Rapid ABC Dataset [4]

 Semi-structured dyadic interaction between toddler and examiner Activities include greeting the child, initiating a game of rolling the ball

Data subset

(D1)

Data subset

(D2)

Data subse

(D3)

Data subset

(D4)

Feature

selection

Speech

Data 1

Data 2

Data N

Feature	Number of features selected
Probability of voicing	12
Pitch	5
Mel-frequency Cepstral Coefficient	5
Line Spectral Frequency	3
First Formant Frequency	5

Task: 10-fold cross-validation using five subsets of data with a various classifiers

Task: Clustering **Task:** Classification with GMM-EM using a support and k-Means vector machine using five subsets (SVM) with a polynomial kernel FAU-AEC dataset

Task: Classification using a support vector machine (SVM) with a linear kernel trained using (degree = 1.65) on FAU-AEC dataset and tested on Rapid ABC dataset

- Fusion of visual and audio features for predicting level of engagement.
- Could be used to parse the tickling state of Rapid ABC.

Conclusions

- Robust detection of laughter is possible in children's speech using acoustic features
- Statistically relevant generalization on other datasets consisting of different recording conditions, ages of subjects, and languages.
- Multimodal analysis using vision and electro-dermal activity improves the understanding of the affective nature of laughter.

back and forth, bringing a book and inviting the child to through it, pretending the book to be a hat, and engaging the child in a tickling game.

- 20 Rapid ABC sessions (aged 15-29 months) used with laughter and other vocalizations annotated. • Number of sample points – 17
- each for speech and laughter.

Cleasifier					Predicted Speech	Predicted Laughter		Predicted Speech	Predicted Laughter
Classifier	Accuracy (mean	Clustering algorithm	Error rate (mean	True Speech	12726	752	True Speech	12	5
	\pm standard deviation)		± standard deviation)	True Laughter	13	223	True Laughter	5	12
Multi-layer Perceptron	95.04 <u>+</u> 2.67%	k-Means	7.19 <u>+</u> 3.67%	Weighted accuracy : 94.43% Unweighted accuracy : 94.46% FAU-AEC's Results			Weighted accuracy : 70.58% Unweighted accuracy : 70.58%		
Radial Basis Function Neural Networks	95.44±2.70%	GMM-EM	5.71 <u>+</u> 3.16%						
SVM (Linear kernel)	95.30 <u>+</u> 2.68%	Clustering indicate rob	Weighted accuracy :						
SVM (Polynomial kernel, degree = 2)	95.82±2.27%	power of se features							
SVM (RBF kernel)	·								
GMM - EM	M 95.16 <u>+</u> 3.25%								

of data

The authors would like to thank the National Science Foundation (NSF) for their gracious support towards this research (NSF grant No. CCF-1029679)