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Motivation 
• Laughter is an important para-

linguisitc cue that can be useful in 

gauging the affective state of the 

speaker. 

• Detection of laughter in children’s 

speech is less explored and has 

important applications in clinical 

psychology. 

• Laughter , along with other 

vocalizations, is an important 

marker for very early detection of 

autism spectrum disorder (ASD) [1]. 

• Diarization of para-lingusitic events 

would benefit psychologists who are 

interested in studying children’s 

affective communication. 
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• Five subsets of data consisting of 

randomly selected 250 speech samples 

• Frame-level acoustic features extracted 

and statistical measures evaluated at 

the phrase level 

• Features are ranked as per the 

information gain criterion 

• 𝐼𝐺 𝑤𝑖, 𝑋𝑗 = − Pr 𝑤𝑖 𝑙𝑜𝑔2Pr⁡(𝑤𝑖)
𝑀
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• Intersection of top 100 features for 

each subset results in final feature set 

Feature Number of low-
level descriptors 

Intensity 2 

Loudness 2 

Mel-frequency Cepstral 
Coefficients 

24 

Pitch 2 

Probability of voicing 2 

Pitch envelope 2 

Line spectral frequencies 16 

Zero-crossing rate 2 

Formant frequency and 
bandwidth 

6 

Ratio of formant frequencies 3 

Ratio of bandwidths of formants 3 

Euclidean distance between 
formant frequencies 

3 

Euclidean distance between 
formant bandwidths 

3 

Euclidean distance between 
ratio of formant frequencies 

3 

Feature Number of 
features 
selected 

Probability of voicing 12 

Pitch 5 

Mel-frequency Cepstral Coefficient 5 

Line Spectral Frequency 3 

First Formant Frequency 5 

Statistical Measure 

Max./Min. value and respective 
relative position within input, 
range, arithmetic mean, 2 linear 
regression coefficients and linear 
and quadratic error, standard 
deviation, skewness, kurtosis, 
quartile 1-3, and 3 inter-quartile 
ranges 

Hamming window of 30 ms  

with 10 ms overlap 

Task: 10-fold 

cross-validation 

using five subsets 

of data with a 

various classifiers 

Task: Clustering 

with GMM-EM 

and k-Means 

using five subsets 

of data 

Task: Classification 

using a support 

vector machine 

(SVM) with a 

polynomial kernel 

(degree = 1.65) on 

FAU-AEC dataset 

Task: Classification 

using a support 

vector machine 

(SVM) with a linear 

kernel trained using 

FAU-AEC dataset 

and tested on 

Rapid ABC dataset 

Classifier Accuracy  
(mean 
±⁡standard 
deviation) 

Multi-layer 
Perceptron 

95.04±2.67% 

Radial Basis 
Function 
Neural 

Networks 

95.44±2.70% 
 

SVM (Linear 
kernel) 

95.30±2.68% 
 

SVM 
(Polynomial 

kernel, degree 
= 2) 

95.82±2.27% 
 

SVM (RBF 
kernel) 

95.96±2.28% 
 

GMM - EM 95.16±3.25% 
 

Clustering 
algorithm 

Error rate  
(mean 
±⁡standard 
deviation) 

k-Means 7.19±3.67% 

GMM-EM 5.71±3.16% 
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Weighted accuracy     : 

94.43% 

Unweighted accuracy : 

94.46% 

 

FAU-AEC’s Results 

Weighted accuracy     : 

81.95% 

Unweighted accuracy : 

82.95% 

 

Absolute improvement of 

12.48% over FAU-AEC 

Weighted accuracy     : 70.58% 

Unweighted accuracy : 70.58% 

Clustering results 

indicate robust predictive 

power of selected 

features 
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• Interaction between 

adolescent and Sony’s 

Aibo robot 

• Data collected from 51 

children (aged 10-13 

years, 21 male, 30 

female) 

 • Laughter annotated along with 

speech. 

• Different types of laughter annotated 

(voiced, unvoiced, voiced-unvoiced, 

and speech modulated with 

laughter) 

• Number of sample points – 13478 

for speech and 236 for laughter.  

 

• Semi-structured dyadic interaction 

between toddler and examiner 

• Activities include greeting the child, 

initiating a game of rolling the ball 

back and forth, bringing a book and 

inviting the child to  through it, 

pretending the book to be a hat, 

and engaging the child in a tickling 

game. 

• 20 Rapid ABC sessions (aged 15-

29 months) used with laughter 

and other vocalizations annotated. 

• Number of sample points – 17 

each for speech and laughter. 

 

 

FAU-Aibo Emotion Corpus [2], [3] 

• Robust detection of laughter is 

possible in children’s speech using 

acoustic features 

• Statistically relevant generalization 

on other datasets consisting of 

different recording conditions, ages 

of subjects, and languages. 

• Multimodal analysis using vision and 

electro-dermal activity improves the 

understanding of the affective nature 

of laughter. 

 

Rapid ABC Dataset [4] 

Conclusions 

• Tickling involves movement of upper 

body and laughter. 

• Use of upper body predicates along 

with laughter detection results. 

• Fusion of visual and audio features 

for predicting level of engagement. 

• Could be used to parse the tickling 

state of Rapid ABC. 

 

• Laughter correlated with smiling. 

• FaceTracker used for extracting 

visual features. 

• Late fusion of scores from visual 

and audio classifier could be used 

for predicting emotion viz. joy. 

 

Laughter and Smile Detector 

Posture and Para-Lingusitic 

Event Detector 


